The eigenvector-eigenvalue identity applied to fast calculation of polSAR scattering characterization
نویسندگان
چکیده
Unlike the original Cloude–van Zyl decomposition of reflection symmetric polarimetric synthetic aperture radar (polSAR) data, a recently suggested version for full/quad pol data relies on Cloude–Pottier mean alpha angle ( ${\bar {\alpha }}$ ) to characterize scattering mechanism. can be calculated from eigenvectors coherency matrix. By means eigenvector-eigenvalue identity (EEI), we avoid calculation eigenvectors. The EEI finds by eigenvalues notation="LaTeX">$3\,\,{\times }$ 3 matrix and its notation="LaTeX">$2\,\,{\times 2 minor(s) only is well suited fast array-based computer implementation. In this letter with focus computational aspects, demonstrate EEI-based determination X-band Flugzeug (F-SAR) image over Vejers, Denmark, including detailed example calculations code.
منابع مشابه
Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation.
We present an efficient method for preparing the initial state required by the eigenvalue approximation quantum algorithm of Abrams and Lloyd. Our method can be applied when solving continuous Hermitian eigenproblems, e.g., the Schrödinger equation, on a discrete grid. We start with a classically obtained eigenvector for a problem discretized on a coarse grid, and we efficiently construct, quan...
متن کاملEigenvalue and Eigenvector Sensitivities Applied to Power System Steady-state Operating Point
This paper proposes techniques used in finding a power system operating point that is both economically optimal and stable in the small-signal sense. To make the system small-signal stable, we should choose a power system operating point such that changes in system state variables due to small disturbances die out quickly. Thus, we need to know how changes in the power system operating point af...
متن کاملOn Some Eigenvector-Eigenvalue Relations
This paper generalizes the well-known identity which relates the last components of the eigenvectors of a symmetric matrix A to the eigenvalues of A and of the matrix An−1, obtained by deleting the last row and column of A. The generalizations relate to matrices and to Sturm–Liouville equations.
متن کاملEigenvalue and Eigenvector Analysis of Dynamic Systems
While several methods aimed at understanding the causes of model behavior have been proposed in recent years, formal model analysis remains an important and challenging area in system dynamics. This paper describes a mathematical method to incorporate eigenvectors to the more traditional eigenvalue analysis of dynamic models. The proposed method derives basic formulas that characterize how a ch...
متن کاملthe crisis of identity in jhumpa lahiris fiction: interpreter of maladies and the namesake
شکل گیری هویت(identity) مقوله مهمی در ادبیات پراکنده مردم(diasporan literature) می باشد. آثار جومپا لاهیری(jhumpa lahiri) ، نویسنده هندی آمریکایی، در سالهای اخیر تحسین منتقدین را به خود معطوف کرده است. وی در این آثار زندگی مهاجران و تلاش آنان برای پیدا کردن جایگاهشان در یک فرهنگ بیگانه را به تصویر کشیده است. این تجربه همواره با احساساتی نظیر دلتنگی برای گذشته، بیگانگی و دوری همراه است. با این ح...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2022
ISSN: ['1558-0571', '1545-598X']
DOI: https://doi.org/10.1109/lgrs.2022.3169994